Electrochemical Dinitrogen Fixation

نویسنده

  • Matthew W. Kanan
چکیده

Materials that catalyze efficient electrochemical N2 fixation would open up the possibility of using an N2/NH3 cycle to store and utilize energy from diffuse renewable sources. In such a cycle, N2 and H2O would be electrolytically transformed to NH3 and O2 in an electrolyzer powered by a renewable electricity source. With existing technologies, NH3 can be utilized in solid oxide fuel cells or combustion engines to generate electricity or work and regenerate N2 and H2O. In contrast to H2, which has received the most attention for fuel-based renewable energy storage, NH3 is easy to store in solid form by complexation with earth-abundant salts. Despite the attraction of an N2/NH3 cycle, to date no suitable electrocatalysts have been developed for this reaction. Moreover, there is no reliable dataset available that characterizes the activities of common electrode materials under any set of conditions. A principal obstacle to studying electrochemical N2 fixation and progressing towards a useful catalyst has been the lack of a sensitive and rapid method for NH3 quantification. Conventional spectrophotometric methods are cumbersome and prone to false positives from the presence of metal ions or other sample impurities. We have addressed this analytical problem by developing a device that quantifies NH3 liberated from an aqueous solution. This device accurately quantifies NH3 content in solutions with as little as a few hundred ppb of NH3 and reaches a saturation response within minutes. Because NH3 is removed from a solution prior to detection, this method is completely immune to interference from metal ions or other electrolyte impurities that impair spectrophotometric methods. Using this unique analytical tool, we have begun determining the N2 reduction activity of a large collection of metal electrodes in both acidic and alkaline electrolytes. We have also constructed electrolysis cells suitable for evaluating catalysts in gas diffusion electrodes that provide much higher concentrations of N2 at the catalyst surface. The information available from these studies will provide the foundation for the subsequent discovery and development of catalysts that are suitable for use in an electrolytic device.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen fixation catalyzed by ferrocene-substituted dinitrogen-bridged dimolybdenum-dinitrogen complexes: unique behavior of ferrocene moiety as redox active site.

A series of dinitrogen-bridged dimolybdenum-dinitrogen complexes bearing metallocene-substituted PNP-pincer ligands is synthesized by the reduction of the corresponding monomeric molybdenum-trichloride complexes under 1 atm of molecular dinitrogen. Introduction of ferrocene as a redox-active moiety to the pyridine ring of the PNP-pincer ligand increases the catalytic activity for the formation ...

متن کامل

Biological Dinitrogen Fixation in Chaparral1

Microbiologist, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Riverside, Calif. Abstract: Presently available data indicate that biological dinitrogen fixation is responsible for the greatest proportion of nitrogen entering chaparral ecosystems. Dinitrogen fixation by the Rhizobium-legume symbioses is relatively unimportant in chaparral w...

متن کامل

Intermediate complexes in chemical and biological nitrogen fixation

Mechanism of dinitrogen reduction in protic media is discussed in the light of results obtained for specially prepared binuclear complexes M"M with bridging dinitrogen capable to be protonated and reduced. The conclusion is made that such complexes with d2 or d3 electronic configuration of M together with additional electron donor are likely intermediates in catalytic dinitrogen reduction by co...

متن کامل

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand

Synthesis and reactivity of iron-dinitrogen complexes have been extensively studied, because the iron atom plays an important role in the industrial and biological nitrogen fixation. As a result, iron-catalyzed reduction of molecular dinitrogen into ammonia has recently been achieved. Here we show that an iron-dinitrogen complex bearing an anionic PNP-pincer ligand works as an effective catalys...

متن کامل

Dinitrogen and Related Chemistry of the Lanthanides: A Review of the Reductive Capture of Dinitrogen, As Well As Mono- and Di-aza Containing Ligand Chemistry of Relevance to Known and Postulated Metal Mediated Dinitrogen Derivatives

This paper reviews the current array of complexes of relevance to achieving lanthanide mediated nitrogen fixation. A brief history of nitrogen fixation is described, including a limited discussion of successful transition metal facilitated nitrogen fixation systems. A detailed discussion of the numerous lanthanide-nitrogen species relevant to nitrogen fixation are discussed and are related to t...

متن کامل

Evaluating the Impact of Atmospheric Depositions on Springtime Dinitrogen Fixation in the Cretan Sea (Eastern Mediterranean)—A Mesocosm Approach

Citation: Rahav E, Shun-Yan C, Cui G, Liu H, Tsagaraki TM, Giannakourou A, Tsiola A, Psarra S, Lagaria A, Mulholland MR, Stathopoulou E, Paraskevi P, Herut B and Berman-Frank I (2016) Evaluating the Impact of Atmospheric Depositions on Springtime Dinitrogen Fixation in the Cretan Sea (Eastern Mediterranean)—A Mesocosm Approach. Front. Mar. Sci. 3:180. doi: 10.3389/fmars.2016.00180 Evaluating th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012